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Abstract— Coverage control algorithms seek to spatially
distribute agents in a domain of coverage, e.g., to minimize
proximity to all points. Leader-follower consensus network
algorithms use local coordination rules to influence the behavior
of a multi-agent system (MAS) as a whole through explicit
control of a subset of agents (called leaders) and neighbor
interactions. In this paper, the equivalence of these two classes
of distributed algorithms for swarm robotics, that were once
considered inherently different, is established. We present a
swarm robotics application, where the real agents (i.e., the
robots) in the domain of coverage are followers; and virtual
agents (i.e., the leaders) are introduced based on the domain
of coverage. The dynamics of followers are shown to be in the
form of a weighted, state-dependent consensus protocol and
the dynamics of the leaders (dependent on the evolution of
the domain) are provided. Formulating a standard coverage
algorithm (i.e., Lloyd’s algorithm) over 2D polygonal domains
as a leader-follower consensus protocol makes the structure
of the ensemble-level dynamics for the MAS explicit with
respect to neighbor interaction. The resultant weighted graph
Laplacian may contribute to the future investigation on the
performance guarantees of a MAS tracking a time-varying
domain. The equivalence of the two classes of algorithms is
validated in simulation.

I. INTRODUCTION

Coverage control of multi-agent systems (MASs) [1] de-
ploys a group of agents in the space to collaboratively com-
plete tasks such as surveillance or exploration of a region of
interest. Among all the coverage control strategies, the stan-
dard decentralized coverage control law is the continuous-
time version of Lloyd’s algorithm [2]. Coverage algorithms
are considered as a mechanism of coordinating many agents
which has been leveraged in many applications including
human-swarm interaction [3], [4], translation and shaping
control of MASs [5], [6], persistent environment monitoring
[7], [8], and pursuit-evasion games [9], [10]. However, in
most of these cases the domain of interest is static. For time-
varying domains, a family of decentralized control laws is
derived in [5], but convergence guarantees are only obtained
in the fully centralized case. Tracking error bounds for
Lloyd’s algorithm over time-varying 1D manifolds has been
investigated in [11] by representing Lloyd’s algorithm as
a leader-follower network [12] with time-invariant graph
Laplacian matrix. However, the guarantees for a MAS to
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track a reference input (e.g., time-varying domains), i.e., the
bound of the tracking error dynamics, for coverage control
algorithms in Rd , d ≥ 2 is complicated by the coupling
among dimensions and still remains an open problem.

In this paper, we seek to bridge two popular classes of
distributed algorithms of swarm robotics once considered
inherently different, i.e., coverage over time-varying domains
and leader-follower consensus network. In a coverage control
setting, we consider the agents in the domain of interest
to be followers while the points that define the boundary
of the domain of interest implicitly become leaders. More
concretely, we reflect the boundary agents, i.e., the agents
whose Voronoi cells share faces with the boundary of the
domain of interest, to obtain virtual leader agents. The fol-
lowers’ dynamics in consensus form are provided under the
general density cases, as well as the closed-form expressions
of followers’ and leaders’ dynamics under uniform density.
Moreover, the ensemble form of the leader-follower network
is obtained as a weighted, state-dependent graph Laplacian
matrix. The structure and weights of the graph Laplacian,
whose topology is that of a Delaunay triangulation, may
contribute to the goal of ultimately obtaining tracking error
bounds and robustness guarantees of Lloyd’s algorithm for
coverage over 2D time-varying domains.

The organization of this paper is as follows: Section II in-
troduces MAS coverage control and some lemmas regarding
geometry of triangles and polygons. Section III provides an
equivalence between Lloyd’s algorithm and a leader-follower
consensus network. The simulation results are presented in
Section IV, and finally the conclusions and discussions about
future work are presented in Section V.

II. PRELIMINARIES

In this section, we provide some preliminary descriptions
of the coverage control problem in d-dimension and other
geometrical results for further investigations on MAS cover-
age over 2D polygonal domains.

A. The MAS Coverage Problem

Let X be a set of agents, and |X |= N; with a slight abuse
of notation, let X(t) =

[
xT

1 (t), . . . ,x
T
N(t)

]T ∈RNd also denote
the configuration of the multi-agent team at time t, where
xi(t)∈D(t)⊆Rd is the position of the ith agent in the convex
time-varying domain of interest D(t) at time t. Let ∂D(t)
denote the boundary of the domain at time t.

The objective of the coverage problem is to optimally
distribute a team of agents in a domain D(t) with a density
function φ defined over D(t). The modified locational cost



[1] for adapting time-varying densities [13] or domains [14]
is used as a metric of the coverage performance in the domain
D(t) at time t:

H(X(t), t) =
N

∑
i=1

∫
Vi(X(t),t)

∥xi(t)−q∥2
φ(q, t)dq (1)

where φ : D(t)× [0,∞) → (0,∞) is a density function that
captures the relative importance of the points in the domain
at time t, and is assumed to be continuously differentiable
in both arguments. The domain is partitioned into regions
of dominance that form a proper partition of the subdomain.
We utilize a Voronoi tessellation of the domain, where agent
i’s Voronoi cell at time t is given by

Vi(X(t), t) =
{

q ∈ D(t)
∣∣∥xi(t)−q∥ ≤

∥∥x j(t)−q
∥∥ ∀ j

}
. (2)

The Voronoi tessellation of a set of seed points X is dual to
the Delaunay triangulation of the same points [15]. For ease
of notation we henceforth drop the explicit time dependency
on the configuration of the multi-agent system.

1) Centroidal Voronoi Tessellations: A necessary condi-
tion for minimizing the locational cost in (1) is known to be
that the agents form a centroidal Voronoi tessellation (CVT)
of the domain [1], i.e., xi(t) = ci(X , t), ∀i, t where we define
ci(X , t) ∈ Vi(X , t) to be the center of mass (or centroid) of
Voronoi cell i at time t, given by

ci(X , t) =
∫

Vi(X ,t)
qφ(q, t)dq

/
mi(X , t) (3)

where mi(X , t) is the mass of the corresponding cell,

mi(X , t) =
∫

Vi(X ,t)
φ(q, t)dq. (4)

2) Coverage Control Law: In [5] and [13], a control
law was proposed to achieve exponential converge to a
CVT in the case of time-varying densities or domains. This
control law was called TVD-C for time-varying densities
(domains), centralized case, and its decentralized version
was also developed which is called TVD-D1, stands for time
varying densities (domains), decentralized case with 1-hop
adjacency information. In this paper we are interested in the
continuous-time version of Lloyd’s algorithm [2], which can
be shown to be a gradient descent strategy for minimizing
(1) for static cases:

Ẋ(t) = κ (C(X(t), t)−X(t)) , (5)

where C(X , t) =
[
c1(X , t)T , . . . ,cN(X , t)T

]T as defined in (3)
and κ > 0 is a control gain.

In what follows, we focus on d = 2, i.e., planar coverage
control. Before investigating the connection between 2D
coverage and consensus protocol, we provide a few results
of geometry which will be used later.

B. Circumcenter of A Triangle

A well-known fact is that the Voronoi tessellation and
Delaunay graph are dual to one another, and the vertices
of the Voronoi tessellations in 2D are the circumcenters of
the Delaunay triangles in the Delaunay graph [15].

Consider a triangle △ whose vertices and corresponding
angles are expressed as tuples {xa,xb,xc} and {ρa,ρb,ρc}
respectively (ordered counter-clockwise). Let xab = xb − xa.
The circumcenter of the triangle, vabc, can be expressed in
two different ways [16].

Define the function f : △→R2, which maps a triangle to
its circumcenter in R2. Then f can be expressed as

vabc = f (△) = βa(△)xa +βb(△)xb +βc(△)xc, (6)

where βa(△) = µa/ν , βb(△) = µb/ν , and βc(△) = µc/ν ;
the first way to obtain these β s is

ν = 2∥xab∥2∥xbc∥2 −2(xT
abxbc)

2, µa = ∥xbc∥2xT
abxac,

µb = ∥xac∥2xT
abxcb, µc = ∥xab∥2xT

acxbc.

The second way to find β s is

ν = sin2ρa + sin2ρb + sin2ρc, (7)

µa = sin2ρa, µb = sin2ρb, µc = sin2ρc. (8)

One can find the following property directly from the
summation of the β s using (6), (7), and (8).

Lemma 1 ([16]): The circumcenter of a triangle △ with
vertices {xa,xb,xc} and angles {ρa,ρb,ρc} is a linear com-
bination of its vertices’ positions.

C. Mass and Centroid of 2D Convex Polygons

The mass and center of mass of a 2D convex polygon
under uniform density (i.e., when the mass of the polygon is
uniformly distributed over its entire surface) can be obtained
by triangulating the polygon. Without loss of generality, we
let a 2D convex polygon P be defined by its n vertices
{v1, v2, · · · , vn} in a counter-clockwise (c.c.w.) order, which
ensures that the determinant computation used to find the
area of a triangle is positive, and thus the use of the absolute
value is omitted. Note the convention does not affect the
calculation of the centroid, since negative signs are cancelled
when dividing by the mass.

Pick any point q ∈ P and connect q and all the vertices
of P; a triangulation is obtained which contains a set of
n triangles {△qv1v2 ,△qv2v3 , · · · ,△qvnv1} in a c.c.w. order.
From [17], the centroids of the triangles are

cb
qvivi+1

= q+
1
3

(
(vi −q)+(vi+1 −q)

)
, (9)

and the areas of these triangles are

Aqvivi+1 =
1
2
(vi+1 −q)T S(vi −q), (10)

where i = 1, · · · ,n, vn+1 = v1, and S =
[

0 −1
1 0

]
which rotates

a vector 90◦ c.c.w.
Thus, for φ(q, t) = 1 ∀t, by the shoelace formula [17], the

mass and the centroid of the polygon are,

mP =
n

∑
i=1

Aqvivn+1 , cP =
1

mP

n

∑
i=1

Aqvivi+1cb
qvivi+1

. (11)



We then have

cP =
1

mP

n

∑
i=1

Aqvivi+1

[
q+

1
3

(
(vi −q)+(vi+1 −q)

)]
.

Expanding the equation, and given that the vertices and
triangles are placed in a circular arrangement, we have

cP = q+
1

3mP

n

∑
i=1

Aqvivi+1(vi −q)+
1

3mP

n

∑
i=1

Aqvi−1vi(vi −q)

= q+
1

3mP

n

∑
i=1

(
Aqvivi+1 +Aqvi−1vi

)
(vi −q).

We put the expressions derived from the Shoelace formula
above together in the following lemma.

Lemma 2 ([17]): Given a 2D convex polygon P defined
by its n vertices {v1, v2, · · · , vn} in a c.c.w. order. The
centroid of polygon P, denoted as cP, can be found as

cP = q+
n

∑
i=1

αi(vi)(vi −q), (12)

where

αi(vi) =
1

3mP

(
Aqvivi+1 +Aqvi−1vi

)
, (13)

q is any point in P, and mP is the mass of P defined in (11).

Then, we find the following property,
Lemma 3: The center of mass of a 2D convex polygon

P can be expressed as (12) where αi > 0, and the αi can
be viewed as linear combination coefficients for the vectors
(vi −q) with the property

n

∑
i=1

αi(vi) =
2
3
. (14)

Proof: From the expression of αi in (13), one can note
that 0<αi(vi)< 1 since it is a ratio that related to the areas of
triangles and the mass of the polygon. Additionally, summing
αi(vi), i = 1, · · · ,n up, we can find that

n

∑
i=1

αi(vi) =
1

3mP

(
n

∑
i=1

Aqvivi+1 +
n

∑
i=1

Aqvi−1vi

)
.

Since the vertices and triangles are placed in a circular
arrangement c.c.w., we conclude that,

n

∑
i=1

αi(vi) =
1

3mP
(mP +mP) =

2
3
.

III. 2D COVERAGE V.S. CONSENSUS PROTOCOL

In this section, we present the equivalence of Lloyd’s al-
gorithm (5) for coverage control over a 2D domain D(t) and
the leader-follower consensus protocol. Let the boundary of
the polygonal domain ∂D(t) be composed of m vertices in a
c.c.w. order, i.e., ∂D(t) = {dℓ}m

ℓ=1 and dm+1 = d1. Intuitively,
the behavior of an agent is such that it coordinates its motion
with its neighboring agents in the team and contributes to
the optimality of the coverage tasks over a time-varying
domain. This could be viewed as an agent attempting to

xi,bry

x1
i,vrtl

x2
i,vrtl

Fig. 1. Geometric illustration of Voronoi tessellation and reflecting
boundary agents Xbry. For any xi,bry ∈ Xbry, by reflecting its position with
respect to each face of Vxi,bry (X)∩∂D virtual agents will be obtained, e.g.,
x1

i,vrtl and x2
i,vrtl in this figure. Moreover, red “•” denotes real (follower)

agents; green “⋆” denotes virtual (leader) agents; dashed line “- -” denotes
adjacency information of real agents; red “⋆” denotes an agent xi ∈ X
of interest, and red “◦” denotes xi’s neighbors x j ∈ Ni; the Delaunay
triangulation over xi ∪Ni is marked in blue.

maintain reasonable distances from its neighbors meanwhile
it captures the motion of the boundary of the domain. At
some level, this behavior resembles the Boids [18] which
simulates the flocking behavior of birds, where the vertices
of ∂D(t) can be viewed as leader agents, and the agents
X are followers. Additionally, after performing a Voronoi
tessellation of D(t), the vertices of the domain {dℓ}m

ℓ=1 will
be part of the vertices of Voronoi cells; and, as mentioned
earlier, the vertices of a Voronoi diagram are circumcenters
of the triangles of its dual, the Delaunay graph. Specifically,
we introduce the idea of reflecting the boundary agents with
respect to the corresponding portion of ∂D(t) to create
a group of virtual agents (as shown in Fig. 1) such that
the vertices of D(t) can be expressed by circumcenters of
Delaunay triangles, and the virtual agents will be viewed as
virtual leaders in such a network.

A. Reflecting The Boundary Agents

Consider a set of N agents X(t)∈D(t)N where the domain
D(t) is partitioned based on X(t) using a Voronoi tessellation
which results in a Voronoi partition {Vi(X , t)}N

i=1. The set X
is divided into to two categories Xint (i.e., interior agents)
and Xbry (i.e., boundary agents):

Xint = {xi ∈ X |µd−1 (Vi(X)∩∂D) = 0,∀i}, Xbry = X\Xint,

where µd−1(A) = 0 denotes a measure-zero set in a (d −1)
sense (in the 2D case, A is a 1D set that is either the empty
set or a collection of singletons).

For any xi ∈ Xbry, by reflecting its position with respect
to each face of Vi(X)∩∂D(t) a group of virtual agents Xvrtl
will be obtained (see Fig. 1). Now computing the Voronoi
diagram for all seeds Xttl = X ∪Xvrtl, we have now over R2,

Vi(Xttl) = {q ∈ R2 |∥q− xi∥ ≤ ∥q− x j∥, ∀x j ∈ Xttl}. (15)

Remark 1: Performing Voronoi tessellation over R2 for
seeds Xttl as in (15), the Voronoi cells Vi for xi ∈ X will



be identical to those obtained from (2); and the vertices of
the domain D can be expressed by the circumcenters of the
corresponding Delaunay triangles formed by agents in Xbry
and virtual agents in Xvrtl. The reflection will eliminate the
inconsistency in the expressions of vertices of Voronoi cells
of boundary agents.

B. Leader-Follower Consensus Over Delaunay Graphs

In this section, we will discuss the equivalence of Lloyd’s
algorithm for coverage control and a leader-follower consen-
sus network.

1) Followers’ Dynamics: Let G = (V, E) be the Delaunay
graph with generators V = Xttl. For an agent xi ∈ X , define its
Delaunay graph neighbor set as Ni = {x j ∈ Xttl |(xi,x j)∈ E};
the neighbors are assumed to be arranged in a c.c.w. order,
and x j=|Ni|+1 = x j=1; and denote X i = {xi}∪Ni (Note: xi ∈
X , but x j ∈ Ni ⊆ Xttl). Then, the Delaunay trianglation over
X i returns a set of triangles △i = {△i

1,△i
2, · · · ,△i

|Ni|}.

Further define an undirected graph G△
i = (V△

i , E△
i ) with

no self-loops (see Fig. 2), where V△
i =△i and

E△
i = {(△i

k,△i
ℓ) |µd−1

(
△i

k ∩△i
ℓ

)
̸= 0, ∀△i

k ,△i
ℓ ∈△i}.

One can find that G△
i is a cycle graph geometrically. If we

further assign a c.c.w. orientation on the cycle graph, then
we can get information of out-neighbors and in-neighbors
in the graph. As shown in Fig. 2, for △i

j = {xi, x j, xk}, i.e.,
a tuple of j-th triangle’s vertices in c.c.w. order. It has two
neighbors, and let us denote its out-neighbor △i

j = △i
k =

{xi, xk, xℓ} (it takes information of △i
j in G△

i ) and its in-
neighbor △i

j =△i
h = {xi, xh, x j} (it feeds information to △i

j

in G△
i ). Moreover, as defined in Section II-B, for the triangle

△i
j, the function f , returns the circumcenter of this triangle,

i.e., f (△i
j) = vi

j which also is the j-th vertex of xi’s Voronoi
cell.

xi
x j

xh

xkxℓ

f (△i
j)

△i
j

△i
j

Fig. 2. A zoomed-in view of Delaunay triangulation and Voronoi cell of
xi ∪Ni. The Delaunay triangulation and the Voronoi cell Vi over xi ∪Ni
are marked in blue and red respectively. Red “⋆” denotes an agent xi ∈ X
of interest, and red “◦” denotes xi’s neighbors x j ∈Ni. The vertices of the
Voronoi cell Vi, e.g., f (△i

j), are the circumcenters of the Delaunay triangles,
e.g., △i

j = {xi, x j, xk}. Additionally, these Delaunay triangles are seeds of
the graph G△

i ; with a c.c.w. orientation assigned, △i
j has one out-neighbor

△i
j and one in-neighbor △i

j .

Theorem 1 (Followers’ Dynamics (General Density)):
Given a set of agents X(t) in a domain D ⊂ R2, the
continuous-time version of Lloyd’s algorithm (as defined in
(5)) for MAS coverage control under general density cases,
i.e., ẋi(t) = κ (ci(X , t)− xi(t)) , ∀xi ∈ X , is equivalent to a
leader-follower consensus protocol

ẋi = ∑
j∈Ni

ωi j(Xttl, t)(x j − xi), (16)

where xi ∈ X , x j ∈ Xttl, and

ωi j = κσ
i
j(t)
(

α
i
j( f (△i

j))β
i
b(△i

j)+α
i
j( f (△i

j))β
i
c(△i

j)
)
(17)

with σ i
j(t)> 0; the β (·)s and α i(·) defined in (6) and (13).

Proof: For the set of agents X i = {xi} ∪Ni and the
resultant Delaunay triangles △i. The circumcenters of these
triangles, i.e., { f (△i

j)}
|Ni|
j=1, are the vertices of the Voronoi

cell Vi(X). Carathéodory’s theorem [19] suggests that any
point inside a polygon can be expressed as the convex
combination (with strictly positive coefficients, without loss
of generality) of the vertices of this polygon, and the coeffi-
cients for the convex combination are not unique. Therefore,
for agent i’s polygonal Voronoi cell Vi(X), its centroid ci can
be anywhere inside it under general density φ(q, t), and there
exist real numbers λ i

j( f (△i
j),φ(q, t))> 0 and ∑

|Ni|
j=1 λ i

j = 1 at
every time t such that

ci =
|Ni|

∑
j=1

λ
i
j( f (△i

j),φ(q, t)) f (△i
j).

Further we assume that the position of Voronoi cell Vi(X)
moves away from the origin by a quantity xi in the space,
then the centroids will shift by the same quantity, we have

ci − xi =
|Ni|

∑
j=1

λ
i
j( f (△i

j),φ(q, t))( f (△i
j)− xi).

Comparing this to the result in Lemma 2 under uniform
density, with 0 < α i

j( f (△i
j)) < 1 from Lemma 3, we con-

clude that for every time t there exist real numbers σ i
j(t)> 0

such that σ i
j(t)α i

j = λ i
j( f (△i

j),φ(q, t)).
Further, the Lloyd’s algorithm can be written as

ẋi = κ(ci − xi) = κ

|Ni|

∑
j=1

σ
i
j(t)α

i
j( f (△i

j))
(

f (△i
j)− xi

)
= κ

|Ni|

∑
j=1

σ
i
jα

i
j(△i

j)
(
β

i
a(△i

j)xi +β
i
b(△i

j)x j +β
i
c(△i

j)xk − xi
)
.

From Lemma 1 we have that β i
a(△i

j)− 1 = −β i
b(△i

j)−
β i

c(△i
j), thus,

ẋi = κ

( |Ni|

∑
j=1

σ
i
j(t)α

i
j( f (△i

j))β
i
b(△i

j)(x j − xi)

+
|Ni|

∑
j=1

σ
i
j(t)α

i
j( f (△i

j))β
i
c(△i

j)(xk − xi)

)



since the vertices and triangles are placed in a circular
arrangement c.c.w., we have

ẋi = κ

|Ni|

∑
j=1

σ
i
j(t)
(

α
i
j( f (△i

j))β
i
b(△i

j)

+α
i
j( f (△i

j))β
i
c(△i

j)

)
(x j − xi) ,

which yields (16) and (17), and

α
i
j( f (△i

j)) =
1

3mi

(
Ab

xi f (△i
j) f (△i

j)
+Ab

xi f (△i
j) f (△i

j)

)
,

α
i
j( f (△i

j)) =
1

3mi

(
Ab

xi f (△i
j) f (△i

j)
+Ab

xi f (△i
j) f (△i

j)

)
,

mi =
|Ni|

∑
j=1

Ab
xi f (△i

j) f (△i
j)
.

Under general density cases, the coefficients for the convex
combination λ i

j > 0, j = 1, · · · , |Ni| are not unique, thus, the
same can be said about the σ i

js. These coefficients make the
expressions of weights ωi j(Xttl, t) ambiguous. However, for
the uniform density cases, the closed form of expressions of
weights ωi j(Xttl, t) can be made explicit.

Theorem 2 (Followers’ Dynamics (Uniform Density)):
Given a set of agents X(t) in a domain D ⊂ R2, the
continuous-time version of Lloyd’s algorithm for MAS
coverage control under uniform density cases, i.e.,
ẋi(t) = κ (ci(t)− xi(t)) , ∀xi ∈ X , can be formulated into
a leader-follower consensus protocol shown in (16) with
weights (17) where σ i

j(t) = 1, ∀ j, ∀t.

Proof: Follows directly from Theorem 1.
Now let us take a look at virtual leaders’ dynamics.
2) Leaders’ Dynamics: As introduced in Section III-A,

for a bounday agent xi,bry ∈ Xbry, its Voronoi cell Vxi,bry(X)
will partially share boundaries with ∂D, i.e.,

{∂D}xi,bry = {(dℓ, dℓ+1) ∈ ∂D |

µd−1

(
∂D∩Vxi,bry(X)

)
̸= 0, ∀ℓ}.

Hence, for each line-segment boundary between the pair
of vertices (dℓ, dℓ+1), there is a a virtual agent xℓi,vrtl which is
created by reflecting xi,bry with respect to a line (hyperplane)
(dℓ, dℓ+1). Perceivably, the dynamics of the virtual leaders
consist of two portions, i.e., the dynamics of their corre-
sponding boundary agents and the dynamics of the domain.
Thus, we have the dynamics of the virtual leader agents as
follows.

Theorem 3 (Virtual Leaders’ Dynamics): With the for-
mulation stated in Section III, the dynamics of the virtual
leaders are

ẋℓi,vrtl = πℓ ẋi,bry +(I2 −πℓ)ḋℓ+ π̇ℓ

(
xi,bry −dℓ

)
, (18)

∀(dℓ, dℓ+1)∈ {∂D}xi,bry , where πℓ = I2−2n̂ℓn̂T
ℓ ; I2 is a [2×2]

identity matrix; n̂ℓ = Sd̂ℓ/∥d̂ℓ∥ denotes the unit normal vector

of line (dℓ, dℓ+1) by defining d̂ℓ = dℓ+1−dℓ. Moreover, π̇ℓ =

−2 ˙̂nℓn̂T
ℓ −2n̂ℓ ˙̂nT

ℓ ; and ˙̂nℓ =
(
∥d̂ℓ∥S− n̂ℓd̂T

ℓ

) ˙̂dℓ/∥d̂ℓ∥2.

Proof: The Householder transform [20] is a linear
transformation that describes a reflection about a plane or
hyperplane containing the origin, thus given a hyperplane
(dℓ, dℓ+1) and a point xi,bry, its corresponding virtual agents
is given by xℓi,vrtl = πℓ

(
xi,bry −dℓ

)
+dℓ. By taking the deriva-

tive, the dynamics of virtual leaders follow.

C. Ensemble Form

Let us arrange x = [XT , XT
vrtl]

T where |X |= N, |Xvrtl|= M.
From the dynamics (16), (17), and (18) we can define a
weighted-Laplacian-like matrix

Lω(Xttl, t) =

([
L f

ω

]
[N×N]

[ℓω ][N×M]

0[M×N] 0[M×M]

)
, (19)

then, we have a leader-follower consensus network,

Ẋ(t) = κ

(
−
(
L f

ω(Xttl, t)⊗ I2

)
X(t)

− (ℓω(Xttl, t)⊗ I2) Xvrtl(X , t)
)
, (20)

where ⊗ denotes Kronecker product, and[
L f

ω

]
i j
=

{
∑ j∈Ni⊆Xttl

ωi j(Xttl, t), i = j, j ∈ Xttl

−ωi j(Xttl, t), i ̸= j, j ∈ X
(21)

[ℓω ]i j =−ωi j(Xttl, t), i ̸= j, j ∈ Xvtl (22)

and the leaders’ dynamics Ẋvrtl(t) can be obtained from (18).
The Laplacian matrix with nonlinear, state-dependent,

and time-varying weights in (21) degenerates to a matrix
with linear time-invariant entries for coverage control over
1D manifolds [11], and this property contributes to the
establishment of the bounds on error dynamics of tracking
time-varying manifolds. However, the discussion about the
robustness guarantees of decentralized coverage algorithms
over time-varying domains in 2D falls outside of the scope
of the main objective considered in this paper. We aim to
show the equivalence of 2D coverage control using Lloyd’s
algorithm and leader-follower consensus network, and these
results, e.g., the dimension-independent graph Laplacian
matrix of the Delaunay graph with its properties, will serve
as preliminaries of investigation of the performance bounds
of decentralized coverage control.

IV. SIMULATIONS

In this section, we validate the equivalence between the
two algorithms, i.e., the Lloyd’s algorithm for coverage con-
trol (5) and the leader-follower consensus network (20), in
simulations. Implementing collision avoidance is necessary
for MAS controls, and it can be done by various approaches,
such as potential field, edge-tension function, etc. Although
we do not explicitly consider collision avoidance here, MAS
coverage naturally achieves safety by spreading agents out
over a domain.



Fig. 3. Simulation results by implementing Lloyd’s algorithm (5) and
leader-follower consensus protocol (20). A polygon domain is moving along
a sinusoidal trajectory, i.e., the black dashed line “- -”; the trajectory of a
randomly selected agent (denoted as red “⋆”) is denoted by the blue solid
line “−” and green dashed line “- -” when implementing Lloyd’s algorithm
and leader-follower consensus protocol respectively.

In the simulations of the two algorithms, the initial con-
dition for the polygonal domain and configuration of agents
are identical. As shown in Fig. 3, the domain is commanded
to move along a sinusoidal trajectory. We randomly select an
agent (denoted by a red “⋆”) and visualize the trajectories
of this agent when the two algorithms are implemented. The
communication topology is the Delaunay graph, which is the
dual of the Voronoi diagram, in both algorithms. The blue
trajectory is a result of Lloyd’s algorithm while the green one
is from the leader-follower consensus protocol. We note that
the two trajectories overlap with each other which validates
the equivalence of these two control laws.

V. CONCLUSIONS AND FUTURE WORK

Conclusions: Reformulation of the distributed coverage
control algorithm over 2D domains, i.e., Lloyd’s algorithm,
into a leader-follower consensus network is established. The
dynamics of followers (i.e., real agents in MAS) are in a
form of weighted, state-dependent consensus protocol on an
interaction topology of Delaunay triangulation, where the
closed-form expression of the weights are found for uniform
density cases; and the dynamics of leaders (virtual agents
resulted from reflecting boundary agents with respect to the
corresponding faces of the polygonal domain) is provided.
A weighted graph Laplacian matrix is obtained from the en-
semble dynamics of the leader-follower consensus protocol.
The simulations validate the equivalence of the two classes
of distributed MAS control algorithms.

Future Work: The leader-follower consensus represen-
tation of the 2D coverage control algorithm arranges the
ensemble dynamics of a multi-agent system in a more struc-
tured way. The weighted, state-dependent graph Laplacian
is related to a well-studied topology of interaction, i.e.,
Delaunay triangulation. The existing properties associated
with such a Laplacian matrix may contribute to reasoning
about the robustness guarantees on the MAS’s coverage
performance. By leveraging the structure of graph Lapla-

cian, together with other control theoretic-techniques such
as contraction theory [21] and time-varying nonconvex op-
timization [22], the future plan will be obtaining bounds on
the tracking error dynamics of the MAS tracking a reference
input encoded through the boundary of the domain of interest
in 2D coverage control.
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