Contraction Theory as Guiding Principles for Design of Engineering Systems Alexander (Sasha) Davydov Center for Control, Dynamical Systems & Computation University of California, Santa Barbara davydovalexander.github.io Semiautonomous Seminar @ UC Berkeley October 18, 2024 ## Modern engineering systems - Nonlinear control systems - Complex environmental or inter-agent interactions - Safety-critical tasks ## Case study: Autonomous driving at the limits of handling - Complex engineering system - Uncertain tire friction forces - Limited control authority - .. - Unstable maneuver - Small errors can cause crashes - Challenging problem for classical control methods F. Djeumou, T. Lew, N. Ding, M. Thompson, M. Suminaka, M. Greiff, and J. Subosits. One model to drift them all: Physics-informed conditional diffusion model for driving at the limits. In *Conference on Robot Learning*, 2024. URL https://openreview.net/forum?id=0gDbaEtVrd #### Desiderata - Highly-ordered transient and asymptotic response - Robustness to model error - Robustness to environmental noise, time-delays, etc. - From continuous-time to discrete-time - Tractable methods for analysis - Amenable to methods based upon convex optimization - Modularity properties - ... ## Outline - Contraction theory and properties - 2 Optimization algorithms and optimization-based control - Imitation learning - 4 Conclusions and opinion paper ## Contraction theory: Definition Given $\dot{x} = F(t, x)$, vector field F is contractive if its flow is a contraction map W. Lohmiller and J.-J. E. Slotine. On contraction analysis for non-linear systems. Automatica, 34(6):683–696, 1998. 🔨 ## Properties of contracting dynamical systems Highly ordered transient and asymptotic behavior: - time-invariant F: unique globally exponential stable equilibrium two natural Lyapunov functions - contractivity rate is natural measure/indicator of robust stability exponential incremental ISS - entrainment to periodic inputs - modularity and interconnection properties, In weighted Euclidean norms, contractivity \iff existence c>0 and $P=P^{\top}\succ 0$ $$PDF(t,x) + DF(t,x)^{\top}P \leq -2cP, \qquad \forall x, t$$ A. Davydov and F. Bullo. Perspectives on contractivity in control, optimization and learning. *IEEE Control Systems Letters*, 8:2087–2098. ## Example contracting systems - optimization algorithms under strong convexity assumptions (primal-dual, distributed, saddle, pseudo, proximal, etc) - @ data-driven learned models under certain parametrizations (stable dynamics learning, imitation learning, etc) - neural network dynamics under assumptions on weight matrices (recurrent, implicit, reservoir computing, etc) - stable linear systems - Our'e-type systems under assumptions on nonlinearity and LMI conditions - feedback linearizable systems with stabilizing controllers - incremental ISS systems - nonlinear systems with a locally exponentially stable equilibrium are contracting with respect to appropriate Riemannian metric ## Continuous-time dynamics and one-sided Lipschitz constants $$\dot{x} = \mathsf{F}(x) \qquad \text{ on } \mathbb{R}^n \text{ with norm } \|\cdot\| \text{ and induced log norm } \mu(A) = \lim_{h \to 0^+} \frac{\|I_n + hA\| - 1}{h}$$ ## One-sided Lipschitz constant $(\approx \text{maximum expansion rate})$ $$\operatorname{osLip}(\mathsf{F}) = \sup_{x} \mu(D\mathsf{F}(x)), \qquad \qquad \operatorname{Lip}(\mathsf{F}) = \sup_{x} \|D\mathsf{F}(x)\|$$ For scalar map $$f$$, $\operatorname{osLip}(f) = \sup_x f'(x)$, $\operatorname{Lip}(f) = \sup_x |f'(x)|$ For affine map $\operatorname{F}_A(x) = Ax + a$ $$\operatorname{osLip}_{2,P}(\operatorname{F}_A) = \mu_{2,P}(A) \leq \ell \qquad \Longleftrightarrow \qquad A^\top P + AP \leq 2\ell P$$ $$\operatorname{osLip}_{\infty,\eta}(\operatorname{F}_A) = \mu_{\infty,\eta}(A) \leq \ell \qquad \Longleftrightarrow \qquad a_{ii} + \sum |a_{ij}| \eta_j / \eta_i \leq \ell$$ #### Banach contraction theorem for continuous-time dynamics: If $-c := \operatorname{osLip}(\mathsf{F}) < 0$, then - F is infinitesimally contracting: $||x(t) y(t)|| \le e^{-ct}||x_0 y_0||$ - **Q** F has a unique, glob exp stable equilibrium x^* - 3 global Lyapunov functions $V_1(x) = ||x x^*||^2$ and $V_2(x) = ||F(x)||^2$ #### Property #1: Incremental ISS Theorem. Consider $$\dot{x} = \mathsf{F}(x, \theta(t))$$ - contractivity wrt x: osLip_x(F) $\leq -c < 0$ - Lipschitz wrt θ : Lip $_{\theta}(\mathsf{F}) \leq \ell$ #### Then incremental ISS property: $$||x(t) - y(t)|| \le e^{-ct} ||x_0 - y_0|| + \frac{\ell}{c} \sup_{\tau \in [0,t]} ||\theta_x(\tau) - \theta_y(\tau)||$$ #### **Property #2: Euler Discretization Theorem for Contracting Dynamics** Given norm $\|\cdot\|$ and Lipschitz $F:\mathbb{R}^n\to\mathbb{R}^n$, equivalent statements - \bullet $\dot{x} = F(x)$ is infinitesimally contracting - ② there exists $\alpha > 0$ such that $x_{k+1} = x_k + \alpha F(x_k)$ is contracting A. Davydov, S. Jafarpour, A. V. Proskurnikov, and F. Bullo. Non-Euclidean monotone operator theory and applications. *Journal of Machine Learning Research*, June 2023b. . To appear ## Outline Contraction theory and properties 2 Optimization algorithms and optimization-based control 3 Imitation learning 4 Conclusions and opinion paper ## Parametric and time-varying convex optimization $$\min \mathcal{E}(x) \quad \Longleftrightarrow \quad \dot{x} = \mathsf{F}(x) \qquad \qquad \mathsf{v}^{\star}$$ #### Parametric and time-varying convex optimization • parametric contracting dynamics for parametric convex optimization $$\min \mathcal{E}(x,\theta) \quad \iff \quad \dot{x} = \mathsf{F}(x,\theta) \qquad \qquad \mathsf{v}^{\star}(\theta)$$ 2 contracting dynamics for time-varying strongly-convex optimization $$\min \mathcal{E}(x, \theta(t)) \iff \dot{x} = \mathsf{F}(x, \theta(t)) \qquad \qquad \mathsf{x}^{\star}(\theta(t))$$ A. Davydov, V. Centorrino, A. Gokhale, G. Russo, and F. Bullo. Time-varying convex optimization: A contraction and equilibrium tracking approach. *IEEE Transactions on Automatic Control*, June 2023a. ©. Conditionally Accepted ## From convex optimization to contracting dynamics - Time-varying Many convex optimization problems can be solved with contracting dynamics $$\dot{x} = \mathsf{F}(x, \theta)$$ | | Convex Optimization | Contracting Dynamics | | |---------------|--|--|--| | Unconstrained | $\min_{x \in \mathbb{R}^n} f(x, \boldsymbol{\theta})$ | $\dot{x} = -\nabla_x f(x, \theta)$ | | | Constrained | $egin{array}{ll} \min_{x \in \mathbb{R}^n} & f(x, oldsymbol{ heta}) \\ ext{s.t.} & x \in \mathcal{X}(oldsymbol{ heta}) \end{array}$ | $\dot{x} = -x + \operatorname{Proj}_{\mathcal{X}(\boldsymbol{\theta})}(x - \gamma \nabla_x f(x, \boldsymbol{\theta}))$ | | | Composite | $\min_{x \in \mathbb{R}^n} f(x, \theta) + g(x, \theta)$ | $\dot{x} = -x + \text{prox}_{\gamma g_{\theta}}(x - \gamma \nabla_x f(x, \theta))$ | | | Equality | $ \min_{x \in \mathbb{R}^n} f(x, \frac{\theta}{\theta}) \\ \text{s.t.} Ax = b(\frac{\theta}{\theta}) $ | $\dot{x} = -\nabla_x f(x, \boldsymbol{\theta}) - A^{\top} \lambda,$ $\dot{\lambda} = Ax - b(\boldsymbol{\theta})$ | | | Inequality | $ \min_{x \in \mathbb{R}^n} f(x, \frac{\theta}{\theta}) $ s.t. $Ax \le b(\frac{\theta}{\theta})$ | $\dot{x} = -\nabla_x f(x, \theta) - A^{\top} \nabla M_{\gamma, b(\theta)} (Ax + \gamma \lambda),$ $\dot{\lambda} = \gamma (-\lambda + \nabla M_{\gamma, b(\theta)} (Ax + \gamma \lambda))$ | | ### Property #3: Equilibrium Tracking Theorem. Consider $$\dot{x} = \mathsf{F}(x, \theta(t))$$ - contractivity wrt x: osLip $_x(\mathsf{F}) \le -c < 0$ - Lipschitz wrt θ : Lip_{θ}(F) $\leq \ell$ #### Then equilibrium tracking property: $$||x(t) - x^{\star}(\theta(t))|| \leq e^{-ct} ||x_0 - x^{\star}(\theta_0)|| + \frac{\ell}{c^2} \sup_{\tau \in [0,t]} ||\dot{\theta}(\tau)||$$ $$x(t)$$ $$x^{\star}(\theta(t))$$ ball centered at $x^{\star}(\theta(t))$ with radius $$\frac{\ell}{c^2} \sup_{\tau \in [0,t]} ||\dot{\theta}_x(\tau)||$$ #### Property #4: Exact Tracking Theorem. Consider $$\dot{x}(t) = \mathsf{F}(x(t), \theta(t)) - (D_x \mathsf{F}(x(t), \theta(t)))^{-1} D_\theta \mathsf{F}(x(t), \theta(t)) \dot{\theta}(t)$$ - contractivity wrt x: osLip $_x(\mathsf{F}) \leq -c < 0$ - smoothness: $D_x \mathsf{F} \text{ and } D_\theta \mathsf{F} \text{ exist}$ #### Then exact tracking property: $$\|\mathsf{F}(x(t),\theta(t))\| \le \mathrm{e}^{-ct}\|\mathsf{F}(x(0),\theta(0))\|$$ and $\|x(t)-x^{\star}(\theta(t))\| \le \frac{1}{c}\mathrm{e}^{-ct}\|\mathsf{F}(x(0),\theta(0))\|$ General way to design feedforward control for tracking in contracting dynamics ## Application to safety filters $$\dot{x} = F(x) + G(x)u^{\star}(x), \tag{Dynamics}$$ $$u^{\star}(x) = \operatorname*{argmin}_{u \in \mathbb{R}^m} \quad \frac{1}{2} \|u - u_{\mathsf{nom}}(x)\|_2^2, \tag{Safety filter}$$ s.t. $$a_i(x)^{\top} u \leq b_i(x), \quad i \in \{1, \dots, k\}$$ $$\|u\|_{\infty} \leq \overline{u},$$ Use contracting dynamics to solve (Safety filter) online ## Outline - Contraction theory and properties - 2 Optimization algorithms and optimization-based control - 3 Imitation learning - 4 Conclusions and opinion paper ## Imitation learning – Global performance guarantees - Collection of expert demonstrations $\mathcal{D} = \{(x_i, \dot{x}_i)_{i=1}^N\}$ - Learn dynamics $\dot{x} = F(x)$ - Use low-level controller to track #### Challenges: - Ensure trajectories converge - Robustness to uncertainty #### **Enforce contraction globally!** Anonymous. Contractive dynamical imitation policies for efficient out-of-sample recovery. *International Conference on Learning Representations (ICLR)*, 2025. URL https://openreview.net/forum?id=IILEtkWOXD. Under review ## Learning contracting dynamics #### Parametrization of contracting dynamics. Consider $$\dot{x} = \mathsf{F}(x) = A(x, x^{\star})(x - x^{\star}), \qquad \textbf{(ELCD)}$$ • parametrization: $$A(x, x^*) = -P_s(x, x^*)^{\top} P_s(x, x^*) + P_a(x, x^*) - P_a(x, x^*)^{\top} - cI_d$$ ullet P_s,P_a neural networks, x^\star learnable equilibrium #### Then exp. convergence in ℓ_2 and contraction wrt Riemannian metric: $$||x(t) - x^{\star}|| \le e^{-ct} ||x(0) - x^{\star}||$$ and $||x_1(t) - x_2(t)|| \le \kappa e^{-ct} ||x_1(0) - x_2(0)||$ S. Jaffe, A. Davydov, D. Lapsekili, A. K. Singh, and F. Bullo. Learning neural contracting dynamics: Extended linearization and global guarantees. In *Advances in Neural Information Processing Systems*, 2024. ©. To appear ## Bijective layers for more expressive dynamics Parametrization alone cannot express all contracting dynamics Idea: use parametrization in latent space and use diffeomorphism to map to data space $$\dot{x} = A(x, x^*)(x - x^*), \qquad z = g(x)$$ #### Contraction is preserved under diffeomorphism L. Dinh, J. Sohl-Dickstein, and S. Bengio. Density estimation using Real NVP. *International Conference on Learning Representations (ICLR)*, 2017. URL https://arxiv.org/pdf/1605.08803.pdf. arXiv preprint arXiv:1605.08803 ## Numerical results Table: DTWD on LASA, Pendulum, and Rosenbrock datasets | | SDD | EFlow | NCDS | ELCD | |----------------|-----------------|-----------------|-----------------|---------------------------------| | LASA-2D | 0.37 ± 0.32 | 1.05 ± 0.25 | 0.59 ± 0.61 | $\textbf{0.12}\pm\textbf{0.11}$ | | LASA-4D | 2.49 ± 2.4 | 2.24 ± 0.12 | 2.19 ± 1.23 | 0.80 ± 0.54 | | LASA-8D | 5.26 ± 0.50 | 2.66 ± 0.63 | 5.04 ± 0.77 | 1.52 ± 0.61 | | Pendulum-4D | 0.49 ± 0.11 | 0.17 ± 0.01 | 1.35 ± 2.26 | 0.03 ± 0.01 | | Pendulum-8D | 0.75 ± 0.08 | 0.33 ± 0.01 | 2.88 ± 0.69 | $\textbf{0.14}\pm\textbf{0.03}$ | | Pendulum-16D | 1.86 ± 0.14 | 0.45 ± 0.01 | 1.65 ± 0.31 | 0.44 ± 0.09 | | Rosenbrock-8D | NaN | 1.90 ± 0.16 | 2.74 ± 0.15 | 1.22 ± 0.01 | | Rosenbrock-16D | NaN | 3.57 ± 0.66 | 3.68 ± 0.12 | 2.57 ± 0.09 | ## Outline Contraction theory and properties - 2 Optimization algorithms and optimization-based control - Imitation learning - 4 Conclusions and opinion paper #### Conclusions #### **Summary:** - motivation and overview of contraction theory - tracking-bounds for time-varying contracting systems - applications to imitation learning #### Ongoing work and open problems: - applications on hardware - real-time closed-loop contraction controllers - learning closed-loop contracting systems - 4 lots of flexibility in imitation learning Overview of theory Recent applications Extensions Open problems #### Perspectives on Contractivity in Control, Optimization, and Learning Alexander Davydov⁰, Graduate Student Member, IEEE, and Francesco Bullo⁰, Fellow, IEEE (Opinion Paper) Abstract—Contraction theory is a mathematical framework for studying the convergence, robustness, and modularity properties of dynamical systems and algorithms. In this opinion paper, we provide five main opinions on the virtues of contraction theory. These opinions are (i) contraction theory is a unifying framework emerging from classical and modern works, (ii) contractivity is computationally-friendly, robust, and modular stability, (iii) numerous dynamical systems are contracting, (iv) conveyor of the contraction t Index Terms—Contraction theory, incremental input-tostate stability, dynamical systems, neural networks. #### INTRODUCTION A. Problem Description and Motivation A DISCRETE-TIME dynamical system is contracting if its update map is a contraction in some metric. Analogously, a continuous-time system is contracting if its flow map is a contraction. Contraction theory for dynamical systems is a set of concepts and tools for the study and design of continuous and discrete-time dynamical systems. In this letter, we expose a few comprehensive opinions on this field and, by doing so, we review the basic theoretical foundations, the main computational and modularity properties, three main example dynamical systems, some modern applications, and extensions to local, weak, and Riemannian contraction. Opinion #1: Contraction theory is a unifying framework emerging from classical and modern works. Contraction theory originates from the seminal work of Stefan Banach¹ in systems can be traced back to the work of Lewis [62]. Demidovich [35], and Krasovskiī [61]. Logarithmic norms and contraction for numerical integration of differential equations was studied in the seminal works [25], [64]. Later, logarithmic norms were applied to control problems by Desoer and Haneda [36] and Desoer and Vidyasagar [37]. The term "contraction analysis" was coined in the seminal work by Lohmiller and Slotine where they studied contraction with respect to Riemannian metrics [63]. It is now known that establishing contraction with respect to any norm has equivalent differential tests (i.e., conditions on the Jacobian of the vector field) and integral tests (i.e., conditions on the vector field itself) [30]. Before this unifying treatment, differential and integral conditions for contractivity have been discovered and rediscovered under different names. For example, focusing on integral conditions the following eight notions are either identical or very closely related: - one-sided Lipschitz maps in: [26] and [50] (Section I.10, Exercise 6) - 2) uniformly decreasing maps in: [19] - 3) no-name in: [43] (Chapter 1, page 5) - 4) maps with negative nonlinear measure in: [75] - 5) dissipative Lipschitz maps in: [16] - 6) maps with negative lub log Lipschitz constant in: [84] - 7) QUAD maps in: [65] - incremental quadratically stable maps in: [27] In other words, despite its deep historical roots, contraction In other words, despite its deep historical roots, contraction theory is still awaiting uniformization and broader appreciation. After decades of disparate work, a comprehensive framework is now emerging that clarifies the relationship among different strands of theoretical research. ## Acknowledgments Veronica Centorrino Scuola Sup Meridionale Anand Gokhale UCSB Sean Jaffe UCSB Giovanni Russo Univ Salerno Anton Proskurnikov Politecnico di Torino Francesco Bullo UCSB A. Davydov, V. Centorrino, A. Gokhale, G. Russo, and F. Bullo. Time-varying convex optimization: A contraction and equilibrium tracking approach. *IEEE Transactions on Automatic Control*, June 2023a. ©. Conditionally Accepted S. Jaffe, A. Davydov, D. Lapsekili, A. K. Singh, and F. Bullo. Learning neural contracting dynamics: Extended linearization and global guarantees. In Advances in Neural Information Processing Systems, 2024. ©. To appear