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Modern engineering systems

@ Nonlinear control systems
@ Complex environmental or inter-agent interactions

o Safety-critical tasks



Case study: Autonomous driving at the limits of handling

@ Complex engineering system

e Uncertain tire friction forces
e Limited control authority
o ...
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@ Unstable maneuver
o Small errors can cause crashes

@ Challenging problem for classical control
methods

F. Djeumou, T. Lew, N. Ding, M. Thompson, M. Suminaka, M. Greiff, and J. Subosits. One model to drift them
all:  Physics-informed conditional diffusion model for driving at the limits. In Conference on Robot Learning, 2024. URL
https://openreview.net/forum?id=0gDbaEtVrd


https://openreview.net/forum?id=0gDbaEtVrd

o Highly-ordered transient and asymptotic
response

@ Robustness to model error

@ Robustness to environmental noise,
time-delays, etc.

@ From continuous-time to discrete-time

@ Tractable methods for analysis

e Amenable to methods based upon
convex optimization

@ Modularity properties



0 Contraction theory and properties
e Optimization algorithms and optimization-based control
© Imitation learning

@ Conclusions and opinion paper



Contraction theory: Definition

Given & = F(t,z), vector field F is contractive if its flow is a contraction map

ct

W. Lohmiller and J.-J. E. Slotine. On contraction analysis for non-linear systems. Automatica, 34(6):683-696, 1998. d


http://dx.doi.org/10.1016/S0005-1098(98)00019-3

Properties of contracting dynamical systems

ct

Highly ordered transient and asymptotic behavior:
@ time-invariant F: unique globally exponential stable equilibrium
two natural Lyapunov functions

@ contractivity rate is natural measure/indicator of robust stability
exponential incremental 1SS

© entrainment to periodic inputs
@ modularity and interconnection properties,
o ..
In weighted Euclidean norms, contractivity <= existence ¢ >0 and P =P >0

PDF(t,x) + DF(t,z)" P < —2¢P, Va,t

A. Davydov and F. Bullo. Perspectives on contractivity in control, optimization and learning. /EEE Control Systems Letters, 8:2087-2098,
2024. ¢


http://dx.doi.org/10.1109/LCSYS.2024.3436127

Example contracting systems

© optimization algorithms under strong convexity assumptions
(primal-dual, distributed, saddle, pseudo, proximal, etc)

@© data-driven learned models under certain parametrizations
(stable dynamics learning, imitation learning, etc)

© neural network dynamics under assumptions on weight matrices
(recurrent, implicit, reservoir computing, etc)

@ stable linear systems

© Lur'e-type systems under assumptions on nonlinearity and LMI conditions
O feedback linearizable systems with stabilizing controllers

@ incremental ISS systems

© nonlinear systems with a locally exponentially stable equilibrium
are contracting with respect to appropriate Riemannian metric



Continuous-time dynamics and one-sided Lipschitz constants

‘ i i : Li+hA| -1
i = F(x) on R™ with norm | - || and induced log norm p(A) = limy, o+ 12 h I

One-sided Lipschitz constant  (~ maximum expansion rate)

osLip(F) = sup, i( DF (), Lip(F) = sup, || DF(x)|

For scalar map f, osLip(f) = sup, f'(z), Lip(f) = sup, | f'(z)]
For affine map F4(z) = Az +a
ATP+ AP 2P

aii+ Y laglni/m < ¢
i

osLipy p(Fa) = po,p(A) <4
Y4

<
osLips ,(Fa) = poon(A) —



Banach contraction theorem for continuous-time dynamics:
If —c:= osLip(F) < 0, then

© F is infinitesimally contracting:  ||z(t) —y()|| < e ||zo — yol|
@ F has a unique, glob exp stable equilibrium z*

© global Lyapunov functions Vi(z) = ||z — z*||? and Va(z) = ||F(=)]|?

ct




Property #1: Incremental ISS Theorem. Consider

& =F(x,0(t))
@ contractivity wrt x: osLip,(F) < —c<0
@ Lipschitz wrt 6: Lipy(F) < ¢

Then incremental ISS property:

. ¢
lz(t) =yl < e e —woll + - sup [|6(7) = 6,(7)l]
- 7€[0,¢]

1
ball centered at z(t) with radius — sup ||0,(7)—6,(7)||
- Co<r<t




Property #2: Euler Discretization Theorem for Contracting Dynamics
Given norm || - || and Lipschitz F : R — R", equivalent statements

© & = F(z) is infinitesimally contracting

@ there exists a > 0 such that zx11 = xx + aF(xy) is contracting

ct ball centered at x;, with radius pk

A. Davydov, S. Jafarpour, A. V. Proskurnikov, and F. Bullo. Non-Euclidean monotone operator theory and applications. Journal of Machine
Learning Research, June 2023b. 4. To appear


http://dx.doi.org/10.48550/arXiv.2303.11273

© Optimization algorithms and optimization-based control



Parametric and time-varying convex optimization

miné(z) <<= 1 =F() S T

Parametric and time-varying convex optimization
© parametric contracting dynamics for parametric convex optimization

min€(z,0) <= i =F(z0) 2 (*))

@ contracting dynamics for time-varying strongly-convex optimization

min € (z,0(t)) <= @ =F(z,0(t)) ey 17 (0(t))

A. Davydov, V. Centorrino, A. Gokhale, G. Russo, and F. Bullo. Time-varying convex optimization: A contraction and equilibrium tracking
approach. /EEE Transactions on Automatic Control, June 2023a. 4. Conditionally Accepted


http://dx.doi.org/10.48550/arXiv.2305.15595

From convex optimization to contracting dynamics — Time-varying

Many convex optimization problems can be solved with contracting dynamics

& = F(z,0)

Convex Optimization

Contracting Dynamics

Unconstrained m%?n f(z,0) &= —-Vyf(x,0)

zeR™
min  f(x,0)

Constrained | Z€R" & = —x + Projy (v — vV f(z,0))
st. zeX()

Composite m%Qn f(z,0) +g(x,0) | & = —x+prox,,, (v — V. f(z,0))
zeR™
min  f(z,0) P =~V f(x,0)— ATX

Equality z€R™ v f(@,9) ’
st. Az =b(0) A=Az —b(0)
. mir}l f<$’ 9) T = —fo(l’, 9) - ATVM'Y b(9)(A$ + fy)\)’

Inequality z€R . ’

sit. Az < b(0) A=7(=A+ VM, o) (Az + 7))




Property #3: Equilibrium Tracking Theorem. Consider

& = F(z,0(t))
e contractivity wrt z: osLip,(F) < —¢ <0
e Lipschitz wrt 6: Lipy(F) < ¢

Then equilibrium tracking property:

- ball centered at z*(A(t)) with radius % sup |0 ()|
* 9 ) C " relo,t]
€T ( 0) 7]




Property #4: Exact Tracking Theorem. Consider
&(t) = F(x(t),0(2)) — (DoF(x(t),0(t))) " DaF(x(t), 6(t))6(t)

@ contractivity wrt z: osLip,(F) < —e <0

@ smoothness: D.F and DyF exist

Then exact tracking property:

IF((t), 0Dl < e~||F(2(0),6(0))|  and Hw(t)—ff*(H(t))llS%e‘CtHF(w(O),@(O))H

v

General way to design feedforward control for tracking in contracting dynamics



Application to safety filters

& = F(z) + G(z)u*(x), (Dynamics)
1
u*(z) = argmin = ||u — Unom(2)||3, (Safety filter)
u€R™ 2
st ai(z) u<biz), ie{l,... k}
ulloo <7,

Use contracting dynamics to solve (Safety filter) online

Trajectories without Feedforward Trajectories with Feedforward
3 2
= —— with FF
14 Es —— without FF
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© Imitation learning



Imitation learning — Global performance guarantees

@ Collection of expert demonstrations —
D = {(zi, 1)}
@ Learn dynamics & = F(z)

@ Use low-level controller to track

Challenges: i . Out-of-sample
N \ state

@ Ensure trajectories converge

Target

@ Robustness to uncertainty

Enforce contraction globally!

Anonymous. Contractive dynamical imitation policies for efficient out-of-sample recovery. International Conference on Learning Represen-
tations (ICLR), 2025. URL https://openreview.net/forum?id=IILEtkWOXD. Under review


https://openreview.net/forum?id=lILEtkWOXD

Learning contracting dynamics

Parametrization of contracting dynamics. Consider
& =F(z) = A(z, ") (x — 2%), (ELCD)
@ parametrization:

A(z,a*) = —Ps(z,2") " Ps(2,0%) + Pa(z,2%) — Pa(z,2") " — cly

o P,, P, neural networks, 2* learnable equilibrium

Then exp. convergence in /> and contraction wrt Riemannian metric:

lz(t) —2*[ < e [l2(0) —a*|| and Jlz1(t) — 22(t)]] < Ke”[21(0) — z2(0)]|

S. Jaffe, A. Davydov, D. Lapsekili, A. K. Singh, and F. Bullo. Learning neural contracting dynamics: Extended linearization and global
guarantees. In Advances in Neural Information Processing Systems, 2024. 4. To appear


http://dx.doi.org/10.48550/arXiv.2402.08090

Bijective layers for more expressive dynamics

Parametrization alone cannot express all contracting dynamics

Idea: use parametrization in latent space and use diffeomorphism to map to data space

2omodela N \\\ N\ oo \\ ~
SO GOSN N N T e T T N
NN N | R TN
N R [ IR PN
o~ o~ s Loz 4 - s s e e 1
S <~ o~ o~ IS
> Al > -~ W] ~- -~ = - -
«4.}}\\\\\\\ ~ — w— ]
s NTRUN N N N N NN P e a—
AN NNTERINNIN S

&= A(z,x")(x — %), z=g(x)

Contraction is preserved under diffeomorphism
L. Dinh, J. Sohl-Dickstein, and S. Bengio. Density estimation using Real NVP. International Conference on Learning Representations

(ICLR), 2017. URL https://arxiv.org/pdf/1605.08803.pdf. arXiv preprint arXiv:1605.08803


https://arxiv.org/pdf/1605.08803.pdf

Numerical results

Table: DTWD on LASA, Pendulum, and Rosenbrock datasets

EFlow NCDS ELCD

SDD

0.12 £+ 0.11

0.59 + 0.61
219 £1.23
5.04 + 0.77

1.05 £+ 0.25
224 +0.12

0.37 + 0.32
249 £ 24
5.26 + 0.50
0.49 + 0.11
0.75 + 0.08
1.86 £+ 0.14

N

LASA-2D

0.80 &+ 0.54

4D
8D

LASA.
LASA.

1.52 + 0.61
0.03 £+ 0.01

2.66 + 0.63
0.17 £ 0.01
0.33 4 0.01
0.45 £+ 0.01

1.35 + 2.26
2.88 + 0.69
1.65 + 0.31
2.74 £+ 0.15
3.68 + 0.12

Pendulum-4D

0.14 + 0.03
0.44 + 0.09
1.22 + 0.01
2.57 + 0.09

Pendulum-8D

Pendulum-16D

1.90 £+ 0.16
3.57 £+ 0.66

aN

Rosenbrock-8D

NaN

Rosenbrock-16D




@ Conclusions and opinion paper



Conclusions

Summary:
@ motivation and overview of contraction theory
@ tracking-bounds for time-varying contracting systems

© applications to imitation learning

Ongoing work and open problems:
© applications on hardware
@ real-time closed-loop contraction controllers
© learning closed-loop contracting systems

Q lots of flexibility in imitation learning



Opinion paper

Overview of theory
Recent applications
Extensions

Open problems

2087

I E E E IEEE CONTROL SYSTEMS LETTERS, VOL. 8, 2024

Perspectives on Contractivity in Control,
Optimization, and Learning

Alexander Davydov"’, Graduate Student Member, IEEE, and Francesco Bullo™, Fellow, IEEE
(Opinion Paper)

Ab: theory is a frame- systems can be traced back to the work of Lewis [62],
work for sludylng the and  Demidovich [35], and K Kit 61]. Logarithmic norms and
modularity properties of dynamical systems and algo- for numerical i of il equations
rithms. In this opinion paper, we provide five main opinions d

on the virtues of contraction theory. These opinions are
(i) contraction theory is a unifying framework emerg-
ing from classical and modern works, (ii) contractivity
is computationally-friendly, robust, and modular stability,
(iii) systems are (iv) con-
traction theory is relevant to modern applications, and
(v) contraction theory can be vastly extended in numer-
ous directions. We survey recent theoretical and applied
research in each of these five directions.

Index Terms—Contraction theory, incremental input-to-
state stability, dynamical systems, neural networks.

INTRODUCTION
A. Problem Description and Motivation

DISCRETE-TIME dynamical system is contracting if its
update map is a contraction in some metric. Analogously,
a continuous-time system is contracting if 1(3 flow map is a
Co ion theory for ical systems is a set
of concepts and tools for the study and design of continuous
and discrete-time dynamical systems. In this letter, we expose
a few comprehensive opinions on this field and, by doing
50, we review the basic theoretical foundations, the main
computational and modularity properties, three main example
dynamical systems, some modern applications, and extensions

to local, weak, and Riemannian contraction.
Opinion #1: Contraction theory is a unifying framework
emerging from classical and modern works. Contraction
theory originates from the seminal work of Stefan Banach' in

was studied in the seminal works [25], [64]. Later, logarithmic
norms were applied to control problems by Desoer and
Haneda [36] and Desoer and Vidyasagar [37). The term
“contraction analysis” was coined in the seminal work by
Lohmiller and Slotine where they studied contraction with
respect to Riemannian metrics [63].

It is now known that establishing contraction with respeu
to any norm has equivalent di ial tests (i.e., i
on the Jacobian of the vector field) and integral tests (ie.,
conditions on the vector field itself) [30]. Before this umfymg
treatment, dif ial and integral itions for
have been discovered and rediscovered under different names.
For example, focusing on integral conditions the following
cight notions are either identical or very closely related:
one-sided Lipschitz maps in: [26] and [50] (Section I.10,
Exercise 6)

2) uniformly decreasing maps in: [19]

3) no-name in: [43] (Chapter 1, page 5)

4) maps with negative nonlinear measure in: [75]

S5) dissipative Lipschitz maps in: [16]

6) maps with negative lub log Lipschitz constant in: [84]

7) QUAD maps in: [65]

8) incremental quadratically stable maps in: [27)

In other words, despite its deep historical roots, contraction
theory is still awaiting uniformization and broader appre-
ciation. After decades of disparate work, a comprehensive
framework is now emerging that clarifies the relationship
among different strands of theoretical research.
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