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Abstract—The structure of the Hessian matrix obtained from
the locational cost used in coverage control is investigated to
provide conditions on the optimality of coverage control solutions.
It is shown that in arbitrary dimensions, the Hessian matrix is
composed of the direct sum of three well-structured matrices: a
diagonal matrix, a block-diagonal matrix, and block-Laplacian
matrix. This structure is exploited in the one-dimensional case,
where an alternative proof of a sufficient condition for optimality
is given. A relationship is shown between centroidal Voronoi
tessellation (CVT) configurations and the sufficient condition for
optimality via the spatial derivative of the density provided in the
cost. A decomposition is used to provide insight into the terms
which most affect optimality. Several classes of density functions
are analyzed under the proposed condition. Experiments on a
multi-robot team are shown to verify theoretical results.

Index Terms—Networked control systems, robotics, optimiza-
tion.

I. INTRODUCTION

ITH the continuous advance of technology, access
Wto smaller, less expensive, and more capable robots
has become more readily available and multi-robot studies
have gained in popularity. The study of swarm robotics has
had impact in agriculture [1], environmental monitoring [2],
human-swarm interaction [3], and others. Coverage control is
an application of swarm robotics in which a team of agents
is deployed into a known region in an attempt to optimally
survey the region. For example, the two-dimensional case is
applicable in coverage of planar domains of interest, such as
fields or rooms that may be surveyed by ground robots or
aerial robots that stay at a constant altitude.

The problem of coverage control using Voronoi tessellations
has been studied extensively as in [4], [5], [6], and [7]. In
[4], the notion of coverage based on locational optimization
and a locational cost was introduced. Locational optimization
has been employed in similar problems including quantiza-
tion, clustering, and the facility location problem. In [5], a
decentralized control law is proposed that drives robots to
a centroidal Voronoi tessellation (CVT) configuration that is
known to be necessary for minimizing the locational cost. In
addition to driving robots to a critical configuration, the control
law integrates sensor measurements to provide an estimate of
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the distribution of sensory information in the environment.
In [6], the control of a swarm of agents under time-varying
density functions was considered and a control law is proposed
that guarantees maintaining a CVT configuration over time.
In [7], the control of a swarm of robots with heterogeneous
sensing capabilities using Voronoi tessellations is investigated
via locational optimization.

It is well known that finding the globally optimal configu-
ration given a density function is NP-hard [8], so most work
on this problem focuses on locally minimizing configurations.
For one-dimensional coverage, originally in [9] and later in
[10], it was shown that using a log-concave density function
is a sufficient condition for minimizing CVT configurations.
Similar conditions for higher dimensions have been elusive,
however, using variational techniques, a sufficient condition
for a CVT configuration to be a local minimum is given in
[11]. In this letter, a new interpretation is given to the Hessian
matrix of the locational cost and an alternative proof is given
for the one-dimensional sufficient condition, which is found
to match the results in [11].

The novelty of this letter is threefold. First, the structure
of the Hessian matrix of the locational cost is analyzed and
a sparsity structure is exposed. Second, an interpretation is
provided based on a decomposition of the rate of change of
the center of mass matrix of a Voronoi cell (Jc;/0p;) and the
sparsity structure of the Hessian. Finally, using the sparsity
structure and this interpretation, an alternative proof of the
main result in [11] is given for cost-minimizing coverage in
the one-dimensional case.

One-dimensional coverage has applications in several areas
including quantization [10] and guaranteed capture [12]. Re-
cent work, [12], uses one-dimensional coverage under uniform
density for guaranteed capture in multi-player dynamic games.
While in [12] optimality is observed under the uniform density
case, we present more general results for arbitrary densities.

The organization of this letter is as follows: In Section II,
some preliminaries for the coverage problem are presented and
the locational cost, the metric of optimality, is defined. Section
IIT investigates the Hessian matrix in arbitrary dimensions and
demonstrates several formulations for the matrix. In Section
IV, we reduce the problem to one dimension, borrowing the
new formulation for the Hessian matrix found in prior sections
to gain more insight regarding the optimality of the robot
configuration, and a sufficient condition is presented for the
CVT configuration to minimize the locational cost. Section V
verifies the sufficient condition in physical robotic systems,
and Section VI provides conclusions.
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II. THE COVERAGE PROBLEM

To discuss minimizing conditions for multi-robot coverage
of a domain, a metric must first be defined. We follow the
construction of the locational cost as was done in [4].

The locational cost describes how well the configuration
of a team of robots covers a desired area of interest (i.e.,
domain). Define D C R? to be the d-dimensional convex
region representing the domain. Within the domain, a team of
n robots is deployed, with positions p; € D,i = 1,2,...,n
The positions of these robots are collected into a single vector
p= [p?, ceey pZ]T € R™. To influence the configuration of
the robot positions, each point in D is assigned a weight of
relative importance. Define ¢ : D — (0, 00) to be a bounded
density function that is continuously differentiable. Then, the
relative importance of a point ¢ € D is captured by ¢(q).
Since the performance of a large class of sensors deteriorates
at a rate proportional to the square of the distance [13], [14],
consider the locational cost

:Z/ lg — pill*¢(g)dg (1)
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where the domain D has been partitioned into regions of
dominance, V;(p), where the cost captures how well each robot
is covering their own region. While any proper partition of D
may be utilized, in this work a Voronoi tessellation is used
since it has been shown to minimize the locational cost for a
given p with respect to the choice of partition [4]. The Voronoi
cell for agent ¢ is then given by

Vilp) ={a € D:|lg—pill <llg —pjilli #5} @)

One can define the mass, m;, and center of mass, c;, of the
ith Voronoi cell, V;, as the hyper-volume integrals (e.g., area
integrals in 2D, volume integrals in 3D)

m;(p) = #(q)dq 3)
Vi(p)
. qd(q)dg
cilp) = sz(P)m (4)

where the center of mass of Voronoi cell ¢ is defined to satisfy
the vector equality

/ (g —ci)d(q)dg =04 =10, ... ,O}T c RY,
Vi(p)

In [10] and [15], it was shown that the first derivative of
the locational cost is given by

OH
o —2(q — pi)"d(q)dg = 2m;(p; — ci)".  (5)
Di Vi(p)
Since ¢ > 0, from (5), a critical point of (1) is given by
pi:Ci<p)7i:1,"'an (6)
or equivalently
[ a-ppotia=0, i ™
Vi(p)

Thus, a minimizer to (1) is necessarily of this form. However,
when (6) is satisfied, p is said to be a centroidal Voronoi

tessellation (CVT) [16]. We are interested in determining
conditions under which a CVT is a minimizing configuration
with respect to the locational cost. To do this, the Hessian
matrix at a CVT configuration is investigated.

III. THE HESSIAN MATRIX

In this section we explore the structure of the Hessian
Matrix to the locational cost. This structure will be used to
provide conditions for the matrix to be positive semi-definite
at a CVT, yielding a local minimum of the locational cost.
Define ¢ = [clT, . ,C?;]T € R™ to be the vector of center of
masses. By direct computation, it can be shown that
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Since only CVT configurations are considered, we have that
(pi — ¢;) = 04. Additionally, Op;/9p; = Ogxq for i # j, and
is identity otherwise. If M € R"?*"4 is defined to be a block-
diagonal matrix where each diagonal block is a d x d matrix,
given by [M];; = m;I; where I, is the d-dimensional identity
matrix, then the Hessian matrix may be expressed as
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o7 ‘- ap) | ®)

= oM (In

p=c

A. Sparsity Structure

In [6] it was shown that {g—;} = g e R is given by
ij J
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where 0V;; = V; N Vj is the set of points shared by Voronoi
cells ¢ and j. Ny, is agent ¢’s neighborhood set for the Delau-
nay graph induced by the Voronoi tessellation. It is important
to note that these integrals are (d — 1)-dimensional integrals
rather than d-dimensional integrals (e.g., line integrals if the
domain D C R?). If agents 7 and j are not neighbors with
respect to the Delaunay graph, Oc;/0p; = 04xq. Thus, dc/dp
encodes adjacency information for the induced Delaunay
graph.

As investigated in [16], the hyperplane between two Voronoi
cells is orthogonal to the line connecting the Voronoi cell
generator points. Due to this special geometry, we now use
a fact from specular reflection to relate (p; —¢) to (p; —¢) for
g € 0Vj;. Let the unit vector normal to the boundary between
Voronoi cells ¢ and j be defined as n;; = (p; — pi)/||p; — pil|
(outward from cell ¢) and define the boundary-tangent unit
Vector to be given by t;;, orthogonal to nm, i.e., such that
n; tw = 0. Then if we define N;; = n;;n to be the normal
prOJectlon matrix and T3; = t;; tzy =1;— N” to be orthogonal
projection matrix, there exists a dyadic relation N;;+T;; = I;.
Note that if d = 2, we may simply define ¢;; = Sn;; where

s=[0 1]



Fig. 1. Two-dimensional specular reflection example. The vector (g —p;) is
in the incident direction, and (p; — q) is in the specularly reflected direction.

Furthermore, for d = 1, we have n;; = 1 and ¢;; = 0.
Let (p; —q) be the specularly reflected direction and (¢—p;)
be the incident direction (see Fig. 1). From [17], we have

pi—aq=(I—=2t;t>) (q—p;) = 2T;; — I)(pj —q). (11)

By substituting this relation into our expression for dc;/0p;,
one may verify that
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From here, define a weighted block-Laplacian matrix [18],
given by £ = A— A where A is the weighted block-adjacency
matrix with [A];; = m;0c; /Op; when i # j and zero when
i = j. A is the degree block-diagonal matrix with [A]; =
> keny, Aik. Further, define the block-diagonal matrix D by
[D]: zlzke Nv, 2A;;N;i. Using these, we find an alternate
formulation for the Hessian matrix.

Lemma 3.1: At a CVT configuration, the Hessian matrix
may be expressed as

0*H

—| =2(M+L-D). 12
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Proof: Follows from direct substitution. ]

Each of the terms in the Hessian matrix is well-structured.

B. Matrix Decomposition of dc/0p

Consider the matrix m;0c¢;/0p;. Define Ac; = (p; —¢;) to
be the deviation from a CVT for agent ¢. Additionally define
b(q) = (¢ — p;i)"'t;; and further let
571, = NijACi
(St = Ti]‘ACi.

u = 5l = pillnij,

v ="Ti(q — pi) = b(@)tij,
Then » and v are the normal and orthogonal components of
(¢—p;) and (p; —q), as in Fig. 1. Similarly, ,, and §; are the

normal and orthogonal components of Ac;. Then m;0c¢;/0p;
may be expressed as

m_aci _/ (uw+v+6,+8)(u—v)T
Zapj oVij |lpj — pill

#(q)dq.

At a CVT configuration, d,, and d; both become zeroes. If the

outer product expansion is carried out at a CVT configuration

and one defines f1;;(p) := [,y ¢(q)dgq to be the mass along

the boundary shared by Voronoi cells ¢ and j, we find that
Oc

i1 b*(9)¢(q)
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where the matrix S;; = Q;; — QF; is skew-symmetric, with
Qij = nijt;f’;. This alternate representation provides a natural
decomposition of the blocks in the matrix d¢/dp: two terms
(with N;; and T;;) account for components longitudinal and
transversal to the normal (respectively), and the third term
(with §;;) may be interpreted as accounting for infinitesimal
rotations orthogonal to these two.

Now consider the D matrix. By the previous expression, we
may verify that

501-
D‘p:c = 2mz Z ?Nl]
JENy,

= 0 (el Ny + fyy, b@)0(a) QF da)

JENvy;,

(13)

the interpretation being that at a CVT, the block entries in D
are only affected by part of the infinitesimal rotation and the
longitudinal components of each Oc; /Op;.

IV. THE ONE-DIMENSIONAL CASE

In previous sections, the coverage problem was addressed
for arbitrary dimensions. We now consider the case where D C
R, and provide a sufficient condition for the optimality of a
CVT configuration. When d = 1, each of the dc¢;/ Op; blocks
become scalar, V;; = 1, and T;; = S;; = Q5 = 0 by virtue of
n;; = £1 and ¢;; = 0. By direct substitution, we note that [£—
D]” = — ZkEva m7307/8pj and [L — D]zy = 7771,;867;/3])]‘.
Thus, we can express £ — D = —(A + A). That is, in one
dimension, the Hessian may be further expressed as

0*H
a7 2(M —A—A).

Without loss of generality we may order the agents such
that p; < p; if @ < j. When d = 1, the Delaunay graph is a
line graph, such that an agent has two neighbors if it is in the
interior of graph, and only one if it is at the boundary. Assume
agent ¢ lies in the interior and has two neighbors, and denote
the two neighbors to be h and j such that p;, < p; < p;. Then
the boundary between cells V; and V; (or V3,) is a singleton,
given by 9Vi; = (p; + p;)/2 (or OVin = (pi + pn)/2).

Note that the matrix M is now given by M =
diag([m1,ma,...,my]). To compute dc;/Op; via (9), we
must interpret the integration operation as a zero-dimensional
integral over a zero-dimensional manifold. As the unit-normal
outward direction has already been taken into account in
the definition of Oc;/Op; [6], the integration amounts to



summing the integrand evaluates at the points in the domain
of integration. Thus, the partial derivative evaluates to

Jc; q—pi)(pj —q
= [ e )y,
Ip;  Jiavi;y mallp; — pill
i+ i+
(p - _pl) (pJ § pj) pi +p;
= @
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Note this is exactly what is obtained from (13) since the second
term disappears in one dimension.

A. A Sufficient Condition for Optimality

We now use these expressions to compute the entries of the
Hessian matrix. For the off-diagonal elements we have

ci . _1(,. , pitp;\ _ 1 |9°H
~Migy, = —a(Pj —Pi)? (TJ> T2 {BPQLJ‘

and for the diagonal elements

{%;7;}1: 9m; — (pj;pi)d) (pi;pj) _ (m;ph)¢ (m;ph) .

2
From here, it is simple to check that if we substitute ¢ = 1
and note that at the CVT m; = p; —p; = p; —pp, these results
match those in [10].
For the two agents on the boundaries, 1 and n, as they only
have one neighbor we find that

2
[%Pt[} no 2my — %(pz - )¢ (%)

2
[%ptt}nn = an - %(pn —pn—1)¢ (pn712+pn,> .

Lemma 4.1: The Hessian matrix 0?H /0p?|,—. is positive
semi-definite if for all agents ¢ with two neighbors we have

m; > ((Pjgpi)gé (Pngpj) + (pi;ph)¢ (pi—gph ))

and for agent 1

my > 2(p2 — p1)o (B5E2)

and for agent n

Proof: This result follows directly from an application of
Gershgorin’s circle theorem [19] on the rows of the Hessian
matrix. Since the matrix is diagonally dominant, all eigenval-
ues are greater than or equal to zero, so the Hessian is positive
semi-definite. ]
With this lemma we can now provide a sufficient condition
on cost-minimizing coverage in one-dimension, captured in
the following theorem.

Theorem 4.2: The matrix
*H
op? lp=c

= 2M(I - &)

is positive semi-definite if

d
/ 9 (g—pyag <0 . (14)
vi(p) 4
Proof: First, consider an agent ¢ with two neighbors. Let
Vi(p) = [0Vin, OV;;]. By linearity, we may break the integral
into two terms

T Ga\a = pidda = [y, ) Geada = pi fy, ) G da-

From the fundamental theorem of calculus and an application
of integration by parts, we expand the integrals to get

fV (») g
- pz(cb(an) - ¢(3%h))-

The sole integral term remaining is [, ) o(q)dg = m;(p).
Assuming, without loss of generality, that p, < p; < p; and
substituting in the value of the boundary points, the above
expression becomes

Joni 00 = i) dg = 1520 (2522
+ Pigph, (b (Prgph)

Solving for m;(p) yields

mi(p) > pj 5p4¢ (pq,-;-pj) + pigph(b (pigph)

which is the same inequality obtained in Lemma 4.1.

We now show this for agent 1. Note that the Voronoi cell
for agent 1 is [a, (p1 + p2)/2], where a is the lower bound of
the domain. Expanding the integral in a similar manner yields

2 ((p2 — p1)o (BE22) + (p1 — a)¢ (a)) -

Here, since ¢(a) > 0 and p; > a, we certainly have that

mi(p) > (p2 — p1)o (B1E22)

which is the same as the inequality from Lemma 4.1. A similar
argument holds for agent n. [ ]
Remark 1: We make a special note of the similarity between
the necessary condition for optimality in (7) and the sufficient
condition in (14).
In [11], variational methods were utilized to get a sufficient
condition in the arbitrary dimension case. If we define

@_[@ aﬂ
b

dq ~ | 9q1’ "7 9qa

= 0V;;0(0Vij) — OVind(OVin) —

—m;(p) <0.

m1(p) >

the sufficient condition for optimal coverage in d-dimensions
is given by

+2 Z /av #(q)dg, Vi. (15)

||pj pzl\

That is, if (15) holds for all agents, the Hessian matrix is
positive semi-definite, and if strict inequality holds for at least
one, then the matrix is positive definite. Note that for d = 1,
this immediately reduces to the sufficient condition given in
(14), since b(g) = 0 in the one-dimensional case.



Remark 2: Note the additional terms on the right-hand side
of (15). The T;; term from m;dc;/dp,; appears in the general
sufficient condition, while the N;; and S;; terms do not.
Thus, one take away from the decomposition is that the T;;
component could be maximized to improve the likelihood of
optimal coverage at a CVT configuration.

We consider the application of (14) to the construction
of density functions that guarantee convergence to cost-
minimizing CVT. In the next subsection, the condition in
Theorem 4.2 is applied to certain classes of density functions.

B. Application to Classes of Density Functions

First, consider the case where the equality holds. Trivially,
the case where d¢/dq = 0 Vg maintains the equality. That
is, any constant density function will satisfy (14). In [12],
an argument is given to prove that the matrix I — d¢/dp
is invertible under a uniform density. Since in the uniform
density case at a CVT configuration all agents have the
same mass m = m; Vi, the Hessian matrix 0?H/0p? =
2M (I — 0c/0p) = 2m(I — Jc/dp) is positive definite, and
the CVT configuration minimizes the locational cost.

Clearly, if d¢/dg = a¢(q), then the equality must hold
by (7). Solutions to this differential equation are of the form
¢ = dpexp(alq — qo)). So an exponential density function
also satisfies (14) implying that at any CVT configuration the
Hessian is positive semi-definite.

Consider an arbitrary linear density function ¢(q) = ag+b
where a,b € R, a # 0, and ¢ > 0 for all ¢ € D. A direct
substitution into (14) yields the condition

pi > 5(pj — pn)

for a > 0 and the opposite inequality for a < 0. This is
what we would expect a CVT configuration to look like for a
monotonic density function and this is, in fact, a necessary
condition for p; = c¢; under monotonic ¢. So, as (14) is
satisfied strictly for a CVT configuration under a linear density
function, the configuration always minimizes (1).

One density that does not satisfy (14) is the function ¢(q) =
aexp(bg) + d for a,b,d € Ry. Noting d¢/dgq = bp — bd,
substituting into (14) and using p; = ¢; yields

/w (q— co)%2dg = b /V (q — co)éla)dq — bd /V (q - co)da.

However, the first term on the right-hand side goes to zero by
(7). If |V;] is defined to be the length of Voronoi cell ¢ and V;
to be the midpoint of Voronoi cell i, then

/ (¢ —ci)%edg = —bd/ qdq + bde; | V|
Vi ! Vi

= —bd|Vi[V; + bde;|Vi| = —bd|Vi|(V; — c5).
For ¢ to satisfy (14) we would need for —bd|V;|(V; —¢;) <0,

but this is only the case if V; > ¢;. Since ¢ is monotonic this
is not possible, so (14) is not satisfied.

V. EXPERIMENTAL RESULTS

The results from previous sections were tested on a multi-
robot team at the Robotarium [20], a remotely accessible
swarm robotics testbed at the Georgia Institute of Technology.
The team is composed of six GRITSBots [21], which are
differential-drive mobile robots. A webcam-based tracking
system provides information about the positions and orien-
tations of the robots. This data is fed into the control law,
which provides the velocity commands to the robots.

We are interested in verifying that the sufficient condition in
(14) would allow us to ascertain the optimality of the final con-
figuration of a multi-robot team that is driven from a random
initial configuration to achieve a CVT configuration, noting
that this final configuration might be close but not exactly at
a CVT due to disturbances and unmodeled phenomena. We
use the TVD-C algorithm that was proposed in [6] to drive
the robots to a CVT configuration. The TVD-C control law is
given by

-1
p=(1-%) (-stp-0+5%)
where x > 0 is a tuning parameter. Note that since we only
consider static densities, dc/dt = 0. To test the result of
coverage in one-dimension, we initially drive the robots to
initial positions on a line, and then orient them so they all
face the same direction. From there, one-dimensional coverage
begins. The final configuration achieved is shown in Fig. 2
Seven different density functions were tested: uniform,
linear, exponential, exponential with constant offset, Gaussian,
bimodal density, and a sine cubed density. All functions are
defined over domain [0, 1] and codomain [1/6, 1]. For conve-
nience, we label the density functions ¢1(q), #2(q), . .., d7(q),
respectively, defined as follows

$1(q) =1, $2(q) = §(1—q) +q
¢3(q) = ¢ exp (qlog (0.92)), ¢a(q) = ¢3(q) +0.1
¢5(q) = exp [—(q — 0.5)% (—4log (%))]

05(q) = d[ exp(FE22) 4 exp( =0T )]
—a) cos® w(g—0. - a
$r(q) = (Lmaeos CNn(g-0.5)+m)+(ath)

(16)

where in our experiments N = 6 is the number of agents, and

a=02,b=12, ¢c=

b 4
l(ilogl(b/a)’ d= (aexp(fl)) '

For each density function, the robots were given initial

positions po = [0.25,0.53,0.60,0.67,0.75,0.90]7, at which
point they began coverage via (16) with x € [0.5, 2].

TABLE I
MAXIMUM VALUE FOR THE SUFFICIENT CONDITION AND MINIMUM
EIGENVALUE OF THE HESSIAN MATRIX AT A CVT

Density Log-concave | Maximum value for (14) | Amin
1 v 0 0.581
b2 v —1.24 x 1073 0.345
3 v —4.12x 107 0.237
4 4.74 x 1073 0.313
o5 v —1.12x 1073 0.335
o6 8.52 x 102 0.506
@7 —6.46 x 10~ T 0.520




Fig. 2. The final centroidal Voronoi tessellation configurations achieved by six robots performing 1D coverage in the Georgia Tech Robotarium under seven
different static density functions. In the top row, from left to right: uniform, linear, exponential, and exponential with offset densities. In the bottom row from
left to right: Gaussian, bimodal, and sine cubed densities. For the different densities, note the different spacing in the tessellations. An overhead projector
is used to visualize several elements in real time directly on the robot workspace. In the plots: the 1D domain is the x-axis (towards the bottom where the
robots are lined up), above it the 1D density is plotted. The density is partitioned based on the Voronoi tessellation of the domain, where the area under the
curve for each partition is colored differently. For a video see: https://youtu.be/Zpz-Co44Zyg

Once the agents arrived at a CVT configuration, the min-
imum eigenvalue, Ay, of the Hessian matrix was collected
for each density and as well as the maximum values of (14)
with respect to each agent, i.e.,

6}

These values are presented in Table I. We may see that the
sufficient condition was satisfied for all log-concave densities,
but it is also satisfied by ¢7, which is not log-concave.

Although (14) is not satisfied for all densities, all the
final configurations minimize the locational cost since all the
eigenvalues of the Hessian matrix are positive.

max{fv;(p)(q —Pi)i—qu o= 1,...

VI. CONCLUSIONS

The optimality of coverage control configurations of multi-
robot teams over arbitrary dimensional domains is considered,
where a fact from specular reflection exposes a Laplacian-
like structure in the Hessian matrix of the locational cost.
This structure is exploited in the one-dimensional case to
obtain a sufficient condition on cost-minimizing coverage
configurations. The condition is applied to different classes
of density functions and it demonstrated that certain classes
of density always result in cost-minimizing coverage. The
results are validated in robotic implementation where these
density functions are executed in experiments where robot
agents optimally cover the domain, and it is shown that these
density functions provide cost-minimizing coverage.
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